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Figure 1. StereoDiff excels in delivering remarkable global and local consistency for video depth estimation. In terms of global
consistency, StereoDiff achieves highly accurate and stable depth maps on static backgrounds across consecutive windows, leveraging stereo
matching to prevent the abrupt depth shifts often seen in DepthCrafter [26], where depth values on static backgrounds can vary significantly
between adjacent windows. For local consistency, StereoDiff yields much smoother, flicker-free depth values across consecutive frames,
especially in dynamic regions. In contrast, MonST3R [86] suffers from frequent, pronounced flickering and jitters in these areas.
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Abstract

Recent video depth estimation methods achieve great perfor-
mance by following the paradigm of image depth estimation,
i.e., typically fine-tuning pre-trained video diffusion mod-
els with massive data. However, we argue that video depth
estimation is not a naive extension of image depth estima-
tion. The temporal consistency requirements for dynamic
and static regions in videos are fundamentally different. Con-
sistent video depth in static regions, typically backgrounds,
can be more effectively achieved via stereo matching across
all frames, which provides much stronger global 3D cues.
While the consistency for dynamic regions still should be
learned from large-scale video depth data to ensure smooth
transitions, due to the violation of triangulation constraints.
Based on these insights, we introduce StereoDiff, a two-
stage video depth estimator that synergizes stereo matching
for mainly the static areas with video depth diffusion for
maintaining consistent depth transitions in dynamic areas.
We mathematically demonstrate how stereo matching and
video depth diffusion offer complementary strengths through
frequency domain analysis, highlighting the effectiveness of
their synergy in capturing the advantages of both. Experi-
mental results on zero-shot, real-world, dynamic video depth
benchmarks, both indoor and outdoor, demonstrate StereoD-
iff’s SoTA performance, showcasing its superior consistency
and accuracy in video depth estimation.

1. Introduction
Monocular video depth estimation is a foundational task
in 3D computer vision. Particularly after the hot trend of
leveraging pre-trained Stable Diffusion (SD) [46] for image
depth prediction [17, 21, 27, 36, 72], e.g., Marigold [27]
and Lotus [21], we have witnessed emerging attentions on
video depth estimation in the community [26, 30, 53, 64, 73,
77, 86]. Many of them fine-tune the Stable Video Diffusion
(SVD) [4] using large-scale video depth data, e.g., Chron-
oDepth [53] and DepthCrafter [26]. However, most previous
methods [26, 53, 67, 73, 76, 77] consider the video depth
estimation merely as a video version of image depth esti-
mator, directly modeling a mapping function from the RGB
video distribution to the video depth distribution, similar to
previous image depth methods that fit a mapping function
directly from image distribution to depth.

In this paper, we argue that video depth estimator is not
simply a video version of image depth estimator. The core
attribute of video depth estimation is consistency. The consis-
tency for dynamic and static parts of the scene is essentially
different and should be handled separately.

① Static regions involve only the camera motion, al-
lowing the 3D structure to be analytically inferred from
pairwise correspondences obtained through stereo match-

ing [18, 38, 50, 51, 63, 64, 68, 86] on a sequence of RGB
frames, providing strong global 3D cues. The consistency of
these areas, primarily about static backgrounds and across
all video frames, is termed global consistency. Since static
elements often occupy a large portion of the scene (e.g.,
roads, trees, buildings outdoors, or walls, tables, and floors
indoors), a strong and robust global consistency is the foun-
dation for achieving consistent and accurate video depth
estimation. ② Dynamic parts contain both object motions
and camera motion. It is infeasible to achieve analytical
4D reconstruction from RGB sequence alone, as it requires
solving unknown object shapes, poses, and motion trajecto-
ries simultaneously, which is highly ill-posed. For example,
imagine a scene where a person is waving his/her hand from
left to right. The predicted depth maps are expected to not
only strictly correspond to the RGB inputs in image com-
position, but also more importantly, maintain consistent,
smooth depth changes for the moving hand across consecu-
tive frames, without abrupt fluctuations or flickering. This
temporal consistency across short sequences and particularly
in dynamic areas, is termed local consistency, which should
be learned by seeing large amount of video depth data.

Motivated by these analysis, we propose StereoDiff , a
novel two-stage video depth estimator that synergizes both
the stereo matching [30, 64, 86] for accurate global con-
sistency and a video depth diffusion model [26, 53, 73]
fine-tuned on large-scale video depth datasets for smooth
local consistency. In the first stage of StereoDiff (Sec. 3.2),
all video frames are processed in pairs through a stereo
matching pipeline and then merged to establish strong global
consistency. However, for dynamic objects, depth predic-
tions are limited to pairwise frames (equivalent to a window
size of 2), leading to clear inconsistencies (Fig. 1, middle
column). Potential camera motion errors can also cause
depth jitters across consecutive frames, resulting in subop-
timal local consistency. To tackle this issue, in the second
stage of StereoDiff (Sec. 3.3), a one-step video depth dif-
fusion process is employed, in order to greatly improve
the local consistency of stereo matching-based depth maps
while preserving their original strong global consistency, re-
sulting in video depth maps with both high-quality global
and local consistency. Leveraging the priors of pre-trained
video diffusion models, e.g., SVD, and fine-tuning them with
extensive video depth data, video depth diffusion models
achieve exceptionally smooth local consistency across neigh-
boring frames. However, it is typically impossible for video
diffusion-based video depth estimators to process all video
frames simultaneously, which inherently limits their global
consistency, as illustrated in the second column of Fig. 1.

We validate StereoDiff on two well-acknowledged, zero-
shot, dynamic, and real-world video depth benchmarks
(Tab. 1): Bonn [39] for indoor scenes and KITTI [19] for
outdoor scenes. We also report the performance on static and



dynamic regions (Tab. 3); and the performance on different
frequency domains (Tab. 2) to assess on global and local
consistency, respectively. The results demonstrate that Stere-
oDiff achieves SoTA performance on both dynamic video
depth benchmarks. Furthermore, StereoDiff effectively re-
tains the strong global consistency established in the first
stage while significantly enhancing the local consistency
in the second. Additionally, as shown in Tab. 5, thanks to
the one-step policy in the second stage, StereoDiff is ∼ 2.1
times faster than DepthCrafter.

In summary, our key contributions are as follows:

• We emphasize that achieving consistent video depth esti-
mation requires distinct treatment for static (background)
and dynamic (foreground) regions. Specifically, global
consistency is better achieved through stereo matching on
static regions, while local consistency for dynamic objects
should be learned from large-scale video depth data.

• Based on these insights, we introduce StereoDiff , a novel
two-stage video depth estimator that synergizes stereo
matching for strong global consistency and video depth
diffusion for smooth local consistency, delivering reliable
video depth estimations. StereoDiff is training-free and
does not require test-time optimization.

• Experimental results on dynamic, zero-shot, real-world
video depth benchmarks (Tab. 1), both indoor and outdoor,
demonstrate StereoDiff’s SoTA performance. In addition,
analysis across frequency domains (Tab. 2 and Fig. 3)
and in dynamic and static regions (Tab. 3) further shows
that StereoDiff effectively integrates the strengths of both
stereo matching and video depth diffusion models.

2. Related Works

2.1. Image Depth Estimation

Monocular image depth estimation has advanced signifi-
cantly from early CNN-based approaches [14, 16, 29, 44, 79,
83] to vision transformer-based [13, 45, 80, 84]. To build
powerful and generalizable depth estimators, DepthAny-
thing [74, 75] and Metric3D [25, 81] series leveraged exten-
sive training data comprising millions of samples, achieving
SoTA performance. Additionally, some methods [1, 5, 40],
e.g., DepthPro [5] focus on accurately estimating the metric
depth. Recent SD-based depth predictor, e.g., Marigold [27]
and GeoWizard [17] incorporated pre-trained diffusion pri-
ors for monocular depth estimation, achieved remarkable
zero-shot generalizability. More recent studies [21, 36, 72],
e.g., GenPercept [72], Lotus [21], have further shown that
single-step diffusion delivers even superior performance.

1For clearer visualization, we filtered out low-confidence 3D points from
the full point cloud, like those representing the moving yellow balloon.

2.2. Video Depth Estimation

SfM for Video Depth. Traditional Structure-from-Motion
(SfM) methods [50, 51, 54, 61, 69, 90] can estimate only
static 3D structure and camera positions, as dynamic objects
violate triangulation constraints. Neither can those real-time
visual SLAM systems [15, 48, 49, 57, 60], e.g., NeuralRe-
con [57] and DoubleTake [49]. Earlier approaches [18, 38]
adapted SfM for motions with strong assumptions, e.g.,
rigidity. Recently, self-supervised methods [2, 3, 8, 11, 28,
33, 34, 58, 82, 85, 88] have tackled this via jointly esti-
mating of video depth, camera poses, and motion resid-
uals, e.g., GeoNet [82], CasualSAM [88], and Robust-
CVD [28, 34]. However, these methods require resource-
intensive test-time optimization (or fine-tuning). More re-
cent advancements, e.g., DUSt3R [64], MASt3R [30], and
MonST3R [86], deliver more accurate and robust SfM re-
sults given monocular videos in an inference-based manner,
even with large motions [86]. All video frames are pairwise
processed and then merged, which brings global consistency.
Nonetheless, due to their pairwise input mechanism, jitters
and flickering between consecutive frames still persist, par-
ticularly on dynamic objects.
End-to-end Video Depth Estimators. The performance of
traditional end-to-end methods [31, 59, 62, 65, 67, 76, 77,
85], e.g., DeepV2D [59], NVDS [67], and FutureDepth [77],
are inevitable constrained due to limited training data and
model capacity. Recently, benefiting from web-scale im-
age datasets [52], diffusion models [10, 20, 22, 37, 42, 43,
46, 47, 55, 56, 87] have achieved exceptional image gen-
eration capability, leading to significant progress in video
generation [4, 7, 9, 23, 24, 66, 71, 89], e.g., SVD [4] and
Sora [7]. More recently, following the advancements of im-
age depth estimation [17, 21, 27, 72], fine-tuning pre-trained
video diffusion models using large-scale video depth data
has gained traction [26, 53, 73], e.g., ChronoDepth [53] and
DepthCrafter [26], producing exceptionally smooth video
depth predictions. However, input videos are typically di-
vided into windows (of continuous or interpolated frames)
and processed sequentially, which can lead to cross-window
consistencies due to the absence of global 3D constraints.

Motivated by these methods, StereoDiff synergizes the
strengths of both SfM and end-to-end video depth diffusion
models, aiming to deliver video depth estimations with both
strong global consistency and smooth local consistency.

3. Method

Given a monocular video with a sequence of RGB images
I = {It}T−1

t=0 , the goal of StereoDiff is to predict con-
sistent depth maps across all video frames. As shown
in Fig. 2, StereoDiff is a two-stage video depth estima-
tor designed to achieve both global and local consistency.
In the first stage, stereo matching [30, 64, 86] is applied
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Figure 2. Pipeline of StereoDiff. ① All video frames are paired for stereo matching in the first stage, primarily focusing on static
backgrounds, in order to achieve a strong global consistency1. ② Using the stereo matching-based video depth from the first stage, the
second stage of StereoDiff applies a video depth diffusion for significantly improving the local consistency without sacrificing its original
global consistency, resulting in video depth estimations with both strong global consistency and smooth local consistency.

across all frames to establish strong global consistency, i.e.,
Ds = {Ds

t}T−1
t=0 = Θs(I). In the second stage, we use a

video depth diffusion model [26, 53, 73] to enhance local
consistency, particularly for dynamic objects, while preserv-
ing the global coherence achieved in the first stage, i.e.,
Dsd = {Dsd

t }T−1
t=0 = Θd(Ds, I). This two-stage approach

enables StereoDiff to deliver high-quality video depth that
maintain coherence across both static and dynamic regions
throughout the video. In Sec. 3.1, we formalize global and
local consistency from the perspective of frequency domain
analysis. Subsequently, Sec. 3.2 and Sec. 3.3 provide de-
tailed descriptions of each stage.

3.1. Formulation of Consistency
Given a video depth estimation D̂ = {D̂t}T−1

t=0 and the
corresponding GT depth D∗, along with a metric function
fϵ(·) to measure the errors between them, we can calculate
the sequence of error values:

E = {ϵt}T−1
t=0 = fϵ

(
D∗, D̂

)
(1)

This error sequence can be represented as a sum of orthogo-
nal waves with different frequencies. In this paper, we use
fast Fourier transform (FFT) to compute the Discrete Fourier
Transform (DFT) of error sequence E , decomposing it into
several frequency components:

F(ϵk) =

T−1∑
t=0

ϵt · e−i2π k
T t, k = 0, 1, . . . , T − 1 (2)

where F(ϵk) represents the frequency component at the k-th
frequency domain; T is the total number of frames; and i
is the imaginary unit. The error sequence can further be
reconstructed by Inverse DFT:

ϵt =
1

T

T−1∑
k=0

F(ϵk) · ei2π
k
T t, t = 0, 1, . . . , T − 1 (3)

Applying FFT to the error sequence, we can efficiently com-
pute F(ϵk) for all k frequency domains. This decomposi-
tion allows us to analyze the contribution of different fre-
quency bands to the overall error, distinguishing between
low-frequency and high-frequency components.
Global consistency refers to the overall stability of depth
predictions across the entire video, especially in static back-
grounds. For static or minimally dynamic objects, depth
changes over time are primarily due to camera motion. Most
real-world videos typically have a frame rate much higher
than 1 FPS (≪ 1Hz), causing these depth variations to ex-
hibit very low-frequency characteristics, sometimes appear-
ing nearly linear. Global inconsistency often refers to persis-
tent, significant depth deviations that remain stable over long
sequences of consecutive frames, which strongly affects the
low-frequency components of error sequence E .
Local consistency focuses on stability between neighboring
frames, particularly in dynamic areas with significant mo-
tion. Depth variations in these regions are influenced by both
camera motion and object motion. Local inconsistencies can



(a) Absolute mean relative error (AbsRel) ↓

(b) Inverse accuracy metric (1− δ1) ↓ to align with FFT settings.

(c) Amplitude ratio (MonST3R / DepthCrafter) on AbsRel and (1 − δ1),
with the red dotted line denoting the amplitude ratio = 1.

Figure 3. Magnitude spectrum of the error sequence on
Bonn [39] dataset. The first scene of Bonn, “balloon”, containing
438 frames, is used as an example here. Due to symmetry, only the
second half of the frequency spectrum is shown. Please refer to the
supplementary material for additional visualizations of other error
metrics, including RMSE ↓ and (1 − δ2) ↓, as well as the error
sequence across different frequency domains for a more compre-
hensive and in-depth understanding.

arise from: 1) errors in camera motion estimation (common
in stereo matching-based methods), causing sudden shifts
and depth fluctuations in certain frames; and 2) limited win-
dow size, which inevitably prevents consistent and accurate
depth tracking of moving objects, resulting in jitters and
flickering. Although these local inconsistencies may not be
clearly reflected on the overall metrics due to the limited
number of affected frames, they can significantly increase
the high-frequency amplitudes of the error sequence E .

3.2. Stereo Matching for Global Consistency

Given the input RGB frames I, the first stage of StereoDiff
pairs each frame with the subsequent n frames, forming a
total of nT − (n+ 1)n/2 image pairs. Each pair is then
processed through a stereo matching pipeline, resulting in
coarse 3D point clouds that ensure the strong global consis-

tency in video depth estimation. Thanks to the advances of
SfM [18, 38, 50, 51, 54, 63, 64, 68, 69, 86], we are fortu-
nate to have works like DUSt3R [64], MASt3R [30], and
MonST3R [86] that offer highly accurate and robust stereo
matching correspondences even without per-scene optimiza-
tion. In this work, we adopt MonST3R [86] as the stereo
matching pipeline, which fine-tunes DUSt3R [64] with exten-
sive dynamic video data. Compared to DUSt3R, MonST3R
more accurately assigns zero confidence to potential low-
quality correspondences (e.g., dynamic, blurry) and applies
SfM only to static, clear correspondences, significantly en-
hancing the performance and robustness in dynamic scenes.
Typically, an optimization-based post-processing step is ap-
plied for improved global alignment after obtaining stereo
matching results. However, we exclude this step for three rea-
sons: 1) video depth estimation is a perception task, which is
better to be inference-based; 2) the optimization step is both
resource-intensive2 and time-consuming3; and 3) Similar to
DUSt3R [64] and MASt3R [30], MonST3R [86] inherently
maintains global consistency through its closed-form global
point cloud initialization, which uses a Minimum Spanning
Tree (MST) to find the optimal path in the pairwise stereo
matching graph with maximum confidence, followed by
rigid point cloud registration [6, 35] to construct the final
coarse 3D point clouds. As a result, StereoDiff is not only
training-free but also fully inference-based4.

We denote the depth maps estimated only based on stereo
matching as Ds = {Ds

t}T−1
t=0 = Θs(I) and those only

generated by video depth diffusion as Dd = {Dd
t}T−1

t=0 =
Θd (x ∼ N (0, I), I). As illustrated in Fig. 3, the magnitude
spectrum two error sequences measured using AbsRel and
(1 − δ1) (please see Sec. 4.1.3 for specific definitions) are
visualized. It is evident that Ds exhibits significantly lower
low-frequency errors compared to Dd, indicating strong
global consistency. Conversely, Dd performs much better
in high-frequency domains, which primarily represent the
local consistency. These findings demonstrate the promising
potential of leveraging the priors from video depth diffusion
models to greatly enhance the local consistency of Ds while
maintaining its original high-quality global consistency.

3.3. Video Depth Diffusion for Local Consistency
Formally, taking Ds as input, the video depth diffusion model
produces the final video depth prediction, expressed as:
Dsd = {Dsd

t }T−1
t=0 = Θd(Ds, I). In this paper, we adopt

2It requires > 80GB of graphics memory for videos with ⩾ 300 frames
at a resolution of 512× 384, making it impractical for long videos.

3Processing a 200-frame video at 512 × 384 resolution with a 300-
iteration optimization takes over 15 minutes on an NVIDIA A800 GPU.

4We omit the Weiszfeld algorithm [41] for focal length estimation, as it
requires only 10 iterations and back-propagates gradients into a minimal
T × 1 matrix, where T is the number of frames.

5Comparisons are conducted in disparity space rather than true-depth
space, because both DepthCrafter and StereoDiff represent their video depth
estimations using disparity maps.



Figure 4. Comparison of mean disparity5 value 1/Dt tested
on Bonn [39] dataset for MonST3R [86], DepthCrafter [26], and
StereoDiff. All disparity maps are normalized to [0, 1] on a per-
scene basis before comparison. Incorporating ZeroSNR drags
the mean value of StereoDiff’s disparity maps closer to the GT,
resulting in improved performance (Tab. 4).

DepthCrafter [26], a fine-tuned SVD model using ∼20K
video sequences, to perform a one-step denoising of Ds. Un-
like SfM-based video depth estimation, which adheres to the
“first principle”, video depth diffusion models take a purely
“data-driven” approach. These models are fine-tuned from
pre-trained video generative models on large-scale video
depth data, mapping the RGB video directly to video depth.

As shown in Fig. 3, the depth maps produced by video
depth diffusion models Dd significantly outperform those
based on stereo matching Ds in high-frequency domains.
Particularly, Fig. 3c depicts the amplitude ratio of the error
sequences calculated on Ds and Dd for clearer demonstra-
tion. This suggests that the components in higher frequency
domains of Ds, which much more significantly differ from
the GT distribution learned by the video depth diffusion mod-
els, are more likely treated as noise and effectively denoised.
Conversely, the low-frequency characteristics of Ds align
much more closely with the GT video depth distribution,
drawing less attention during denoising and thus being better
preserved. This results in strong retention of low-frequency
features and targeted denoising of high-frequency compo-
nents, significantly reducing the high-frequency errors in Ds.

Mathematically, substituting Ds into Eq. 1 yields the
corresponding error sequence Es = {ϵs

t}T−1
t=0 . This tem-

poral signal can then be transformed into the frequency do-
main F(ϵs

k), k ∈ [0, T − 1] using FFT (Eq. 2). Similarly,
we denote the error sequence of Dsd as Esd = {ϵsd

t }T−1
t=0 .

∀t ∈ [0, T − 1], ϵs
t ⩾ 0 and ϵsd

t ⩾ 0. The average of error
sequence yields the final metric: (1/T )

∑T−1
t=0 ϵt. As dis-

cussed above and demonstrated in Fig. 3, during the second
stage of StereoDiff, the video depth diffusion model acts as
a “low-pass filter” on F(ϵs

k). Assuming a threshold Kthr, for
simplicity, we approximate that after the video depth diffu-
sion process, the magnitudes of all frequency components
> Kthr are re-scaled by a factor α ∈ (0, 1):

F(ϵsd
k ) ≈

{
F(ϵs

k), k ⩽ Kthr

α · F(ϵs
k), k > Kthr

(4)

Following Parseval’s energy theorem, which states that the
total energy of the signal in the time domain and frequency
domain are equal, we can derive:

T−1∑
k=0

∣∣F(ϵsd
k )

∣∣2 ⩽
T−1∑
k=0

|F(ϵs
k)|

2

⇒
T−1∑
t=0

∣∣ϵsd
t

∣∣2 ⩽
T−1∑
t=0

|ϵs
t|
2 ⇒ 1

T

T−1∑
t=0

ϵsd
t ⩽

1

T

T−1∑
t=0

ϵs
t

(5)

This derivation shows that maintaining the low-frequency
characteristics of Ds, while reducing the high-frequency
components of its error sequence Es, leads to improved per-
formance. In practice, as illustrated in Fig. 3, StereoDiff’s
low-frequency error magnitudes Dsd largely inherit those
of Ds, while high-frequency components are significantly
reduced by leveraging the video depth diffusion, leading to
improved performance (Tab. 1 and 2) and greatly smoothed
prediction (Fig. 1), aligning well with our analysis.
ZeroSNR. In diffusion models, the forward process progres-
sively adds Gaussian noise to clean samples according to a
pre-defined variance schedule, i.e., β1, · · · , βT :

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(6)

Let αt = 1− βt and at =
∏t

s=1 αs, xt can be sampled as:

q (xt | x0) = N
(
xt;

√
ātx0, (1− ᾱt) I

)
(7)

Equivalently:

xt =
√
ātx0 +

√
1− ātϵ, ϵ ∼ N (0, I) (8)

The SNR is defined as: SNR(t) = at/(1− at). Specifically,
in DepthCrafter [26] and the standard SVD [4] scheduler6,
the variance sequence is β0 = 0.00085 and βT = 0.012
with linear scaling, we derive: xT ≈ 0.0016x0 + 0.9992ϵ.
This indicates the input, i.e., xT , always contains a small
amount of signal during training. The leaked signal contains
the lowest frequency information, e.g., the mean value. The
model learns to denoise with this signal. However, during
inference, pure Gaussian noise is used, prompting the model
to generate outputs with medium value [32, 36].

As illustrated in Fig. 4, DepthCrafter’s video disparity
maps have a mean value closer to 0.5 compared to other
methods. Although StereoDiff achieves relatively accurate
mean disparity values without ZeroSNR due to its first stage
(stereo matching), incorporating ZeroSNR further aligns
the mean value of StereoDiff’s disparity maps closer to GT,
resulting in improved performance (Tab. 4).

6https://huggingface.co/docs/diffusers/en/api/
schedulers/euler

https://huggingface.co/docs/diffusers/en/api/schedulers/euler
https://huggingface.co/docs/diffusers/en/api/schedulers/euler


Method Bonn [39] (Indoor) KITTI [19] (Outdoor) Average Average

AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑ AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑ Rank7 ↓ Rank8 ↓

DepthAnything V2 [75] 0.1250 1.7765 0.8297 0.9912 0.1758 4.2583 0.6872 0.9664 6.25 4.75
DepthAnything [74] 0.1112 1.5191 0.8860 0.9956 0.1755 4.3756 0.6875 0.9678 4.75 3.25

DUSt3R [64] 0.1757 2.3618 0.7798 0.9602 0.3343 7.0966 0.5065 0.7497 7.75 7.75
MASt3R [30] 0.1748 2.2829 0.7698 0.9125 0.2250 5.0800 0.6460 0.8664 6.75 7.13
MonST3R [86] 0.0818 1.2412 0.9542 0.9916 0.1661 4.1881 0.7387 0.9662 2.75 2.38

ChronoDepth [53] 0.1248 1.6918 0.8501 0.9823 0.1749 4.4265 0.7288 0.9334 4.25 5.00
DepthCrafter [26] 0.1104 1.6817 0.8955 0.9945 0.1617 5.3883 0.7695 0.9518 2.50 3.50

StereoDiff (Ours) 0.0799 1.2257 0.9549 0.9870 0.1469 4.4183 0.7764 0.9654 1.00 2.25

Table 1. Quantitative comparison of StereoDiff with SoTA methods on zero-shot, real-world, dynamic video depth benchmarks. The
four sections from top to bottom represent: image depth estimators, stereo matching-based estimators, video depth diffusion models, and
StereoDiff. To ensure comprehensive evaluation, we used two datasets: Bonn [39] for indoor scenes and KITTI [19] for outdoor scenes. We
report the mean metric value of StereoDiff across 10 independent runs. Best results are bolded and the second best are underlined.

4. Experiments
4.1. Experimental Settings
4.1.1. Implementation Details
In the first stage, we set n = 2 for forming image pairs, sym-
metrizing them before feeding them into the stereo matching
pipeline. The Weiszfeld algorithm [41] is adopted for camera
intrinsics, and Procrustes alignment [35] is used for solving
camera poses. The maximum resolution is limited to 512. In
the second stage, following [26], we set the window size to
110 frames with a 25-frame overlap. The ZeroSNR trick is
implemented by setting the trailing [32, 36] mode for
the timestep spacing in schedulers. Depth maps obtained
from the first stage Ds are resized to the original frame size
using nearest interpolation before the one-step denoising
process, which is performed from denoising timestep t = 2
to t = 1 with a total number of denoising timesteps T = 4.

4.1.2. Evaluation Datasets.
We use two zero-shot, real-world, dynamic benchmark
datasets for evaluation: Bonn [39] (indoor) and KITTI [19]
(outdoor). Six dynamic indoor videos from Bonn, with
332 ∼ 580 frames each, and twelve dynamic outdoor videos
from KITTI’s validation set, with 17 ∼ 251 frames each,
are included. Video frames from Bonn are sized 640× 480
and 1216 × 352 in KITTI. Note that we omit static video
depth benchmark datasets such as ScanNet [12] and Scan-
Net++ [78], as they can be trivially handled by methods like
DUSt3R [64], MASt3R [30], and MonST3R [86].
About Zero-Shot. Zero-shot evaluation is more challenging
and more close to the practical unknown scenarios during
application. Note that for KITTI [19] dataset, it is one of
the training datasets used by DepthCrafter [26], whereas
DUSt3R [64] and MonST3R [86] were not trained on KITTI.

7Rankings on AbsRel and δ1, the two most recognized metrics in the
realm of depth estimation, following [17, 25–27, 53, 72–75, 81, 86].

8Rankings on AbsRel, RMSE, δ1, and δ2.

For Bonn [39] dataset, it is zero-shot for DepthCrafter [26],
DUSt3R [64] and MonST3R [86].
About Real-World. StereoDiff is primarily validated on
real-world datasets for several reasons: ① Synthetic datasets
are inherently artificial. Dense, high-quality GTs that align
perfectly with designed scenarios are inherently accessible.
② In real-world settings, true GTs are inaccessible, and
sensor-based approximations often face challenges like miss-
ing depth values. Also, real-world situations better reflects
the scenarios where the video depth estimators will be po-
tentially applied, e.g., robotics.

4.1.3. Evaluation Metrics.

Following the affine-invariant evaluation protocols from [21,
26, 27, 53, 73, 86], we firstly align the estimated video
depth maps with GT using least-squares fitting, and resize
all estimations to match the original size of input video in
nearest mode. Note that during the least-squares fitting,
all frames in a video depth sequence share identical scaling
and shifting factors. Specifically, given GT D∗ = {D∗

t }T−1
t=0

and fitted predictions D̂ = {D̂t}T−1
t=0 , we report two error

metrics: 1) absolute mean relative error (AbsRel) and 2)
root-mean-square deviation (RMSE), i.e.:

AbsRel(D∗, D̂) =
1

T

T−1∑
t=0

 1

N

N−1∑
j=0

|D∗
tj − D̂tj |
D̂tj



RMSE(D∗, D̂) =
1

T

T−1∑
t=0

 1

N

√√√√N−1∑
j=0

(D∗
tj − D̂tj)2


(9)

where N = H ×W , indicating the total number of pixels.
We also report two accuracy metrics: δ1 and δ2, denoting the
proportion of pixels satisfying Max(D∗

tj/D̂tj , D̂tj/D
∗
tj) <

1.25 and 1.252, respectively.



Metrics Method Low Freq. High Freq.
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

AbsRel↓
DepthCrafter 0.1104 0.0152 0.0215 0.0238 0.0286 0.0206 0.0112 0.0062 0.0023 0.0012 0.0009
MonST3R 0.0822 0.0130 0.0149 0.0142 0.0149 0.0142 0.0144 0.0116 0.0077 0.0062 0.0067
StereoDiff (Ours) 0.0806 0.0159 0.0128 0.0132 0.0157 0.0143 0.0135 0.0098 0.0067 0.0043 0.0032

(1− δ1)↓
DepthCrafter 0.1046 0.0380 0.0655 0.0696 0.0835 0.0619 0.0331 0.0198 0.0100 0.0046 0.0027
MonST3R 0.0481 0.0207 0.0247 0.0313 0.0408 0.0411 0.0335 0.0258 0.0180 0.0134 0.0150
StereoDiff (Ours) 0.0478 0.0246 0.0241 0.0325 0.0428 0.0442 0.0371 0.0261 0.0173 0.0101 0.0069

Table 2. Quantitative comparisons of MonST3R, DepthCrafter, and StereoDiff on different frequency domains. We use DFT and
Inverse DFT to disentangle the components of the metric sequences calculated on Bonn [39] dataset in various frequency domains. For
simplicity, the entire frequency range is divided into 11 discrete groups: F0, · · · ,F10, representing low to high frequencies. We report the
results on two most recognized metrics, AbsRel ↓ and (1− δ1) ↓. The results on other metrics are provided in the supplementary material.

Region AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑

Dynamic -0.0069 -0.0844 +0.0140 +0.0023
Overall -0.0020 -0.0150 +0.0013 -0.0042
Static +0.0009 0 -0.0004 -0.0049

(a) Performance improvement of StereoDiff over MonST3R. For example,
AbsRel = AbsRelStereoDiff − AbsRelMonST3R.

Region AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑

Dynamic -0.0178 -0.2575 +0.0413 -0.0055
Overall -0.0306 -0.4555 +0.0600 -0.0071
Static -0.0335 -0.4990 +0.0641 -0.0069

(b) Performance improvement of StereoDiff over DepthCrafter.

Table 3. Quantitative comparisons on dynamic and static re-
gions of the scene among MonST3R, DepthCrafter and StereoDiff.
We use FlowSAM [70] for masking moving objects.

Method AbsRel↓ RMSE↓ δ1↑ δ2↑

Naive Solution 0.1245 1.7807 0.8503 0.9719w/ Latent Sharing ±0.0002 ±0.0016 ±0.0018 ±0.0006w/o ZeroSNR

w/o Latent Sharing 0.0809 1.2383 0.9544 0.9867
w/o ZeroSNR ±0.0003 ±0.0039 ±0.0006 ±0.0003

StereoDiff (Ours) 0.0799 1.2257 0.9549 0.9870w/o Latent Sharing ±0.0001 ±0.0028 ±0.0006 ±0.0004w/ ZeroSNR

Table 4. Ablation studies. Removing latent sharing strategy and
adding the ZeroSNR trick both yield effective performance gains.
Here we report the results on Bonn dataset [39].

Method DepthCrafter MonST3R StereoDiff (Ours)

Inf. Time (s) 1.1708 0.4100 0.4100+0.1569

Table 5. Inference time per frame tested on the first scene of
Bonn [39] dataset (“balloon”), using an NVIDIA A800 GPU. We
set n = 2 for both MonST3R and StereoDiff.

4.2. Quantitative & Qualitative Comparisons

As shown in Tab. 1, StereoDiff achieves SoTA performance
across both dynamic, zero-shot, real-world video depth

benchmarks. Furthermore, the results of frequency do-
main analysis (Tab. 2) demonstrate that StereoDiff effec-
tively maintains the strong low-frequency global consistency
achieved via stereo matching, while significantly enhanc-
ing the high-frequency local consistency. This enhancement
greatly reduces local jitters and flickering across neighbor-
ing frames particularly in dynamic areas (Fig. 1), as high-
frequency characteristics of Ds differ much more signifi-
cantly from the GT distribution learned by the video depth
diffusion models, and are more likely treated as noise and
effectively denoised. Additionally, Tab. 3 clearly shows that
StereoDiff outperforms MonST3R mainly in high-frequency
dynamic regions and outperforms DepthCrafter mainly in
low-frequency static regions. These results align well with
our analysis in Sec. 3.2 and 3.3. Part of the qualitative com-
parisons on Bonn [39] dataset are shown in Fig. 1. Please re-
fer to the supplementary material for the qualitative compar-
isons on KITTI [19] dataset and further results on Bonn [39].
Inference Speed. The inference time comparison among
MonST3R [86], DepthCrafter [26] and StereoDiff is reported
in Tab. 5. Thanks to efficient stereo matching and MST
alignment, especially the one-step denoising policy of the
video depth diffusion model in the second stage, StereoDiff
is ∼ 2.1 times faster than DepthCrafter.

4.3. Ablation Study
As discussed in Sec. 2.2, for video diffusion-based video
depth estimators, input videos are typically divided into win-
dows and processed sequentially. In DepthCrafter, this is
performed by dividing the video into overlapped windows
and sharing the latents of overlapped frames. While this
strategy improves continuity, it can still fall short in main-
taining consistency between windows, especially on static
backgrounds (Fig. 1). As illustrated in Tab. 4, the removal
of latent sharing strategy leads to significant performance
gains. This is primarily because: 1) the strict spatial cor-
respondence between the diffusion’s latent space and the
RGB space, making latent sharing ineffective for scenes
with moving cameras or objects, which may lead to harmful
feature distortions, especially as the timestep t → 0; and 2)



in DepthCrafter’s original multi-step denoising process, the
latent is progressively refined from Gaussian noise, where
sharing latents across overlapping frames can not only aids
consistency at early timesteps (t → T ) but also allows the
distortions of latent feature to be gradually refined as t → 0.
Additionally, incorporating ZeroSNR aligns the mean value
of StereoDiff’s disparity maps more closely with the GT
(Fig. 4), further enhancing the performance.

5. Conclusion
In this paper, we emphasize the need for distinct strategies to
achieve consistent video depth estimation across static and
dynamic regions. Motivated by these insights, we introduce
StereoDiff, a novel two-stage video depth estimator that com-
bines stereo matching for strong global consistency provided
by the global 3D constraints, and video depth diffusion for
significantly enhanced local consistency. Experimental re-
sults on two well-acknowledged video depth benchmarks
(Tab. 1), including the frequency domain analysis (Tab. 2
and Fig. 3), demonstrate StereoDiff’s effectiveness in syner-
gizing the strengths of both, achieving SoTA performance in
dynamic, zero-shot, real-world video depth estimation.
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Supplementary Material

7. More Results of Frequency Domain Analysis

Additional magnitude spectrum visualizations of error se-
quences from the Bonn [39] dataset, including RMSE↓ and
(1− δ2)↓, are presented in Fig. 5. Similarly, the visualiza-
tions of magnitude spectrum on AbsRel↓, RMSE↓, (1−δ1)↓,
and (1− δ2)↓ of KITTI [19] dataset are illustrated in Fig. 6.
It is evident that the depth maps generated by video depth
diffusion models Dd significantly outperform those based on
stereo matching Ds in high-frequency domains, reflecting
smoother local consistency. Conversely, Ds performs better
in low-frequency domains than Dd, highlighting robust and
strong global consistency. In practice, as illustrated in Fig. 5
and 6, StereoDiff’s depth maps Dsd effectively inherit the
low-frequency error magnitudes of Ds while significantly
reducing the high-frequency errors by leveraging a one-step
denoising process based on the video depth diffusion model.
This process effectively achieves greatly smoothed local
consistency, while retaining the original high-quality global
consistency, aligning well with our analysis.

Furthermore, the supplementary results of frequency do-
main analysis on Bonn [39] and KITTI [19] dataset is re-

(a) RMSE↓

(b) (1− δ2)↓

Figure 5. Magnitude spectrum of the error sequence on
Bonn [39] dataset. The first scene of Bonn, “balloon”, containing
438 frames, is used as an example here. Due to symmetry, only the
second half of the frequency spectrum is shown.

(a) AbsRel↓

(b) RMSE↓

(c) (1− δ1)↓

(d) (1− δ2)↓

Figure 6. Magnitude spectrum of the error sequence on the
KITTI [19] dataset. The spectrum is computed across all samples
used for validation, as many KITTI outdoor videos contain limited
number (< 100) of frames. Similar to Fig. 5, only the second half
of the frequency spectrum is shown due to symmetry.



Metrics Method Low Freq. High Freq.
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

RMSE↓
DepthCrafter 1.6823 0.1783 0.3221 0.2269 0.3125 0.2567 0.1448 0.0884 0.0355 0.0191 0.0144
MonST3R 1.2427 0.0949 0.1075 0.1633 0.1503 0.1579 0.1604 0.1356 0.0848 0.0678 0.0726
StereoDiff (Ours) 1.2294 0.1349 0.1065 0.1657 0.1659 0.1565 0.1469 0.1187 0.0786 0.0517 0.0421

(1− δ2)↓
DepthCrafter 0.0055 0.0008 0.0019 0.0028 0.0035 0.0030 0.0025 0.0019 0.0007 0.0004 0.0004
MonST3R 0.0084 0.0013 0.0014 0.0054 0.0054 0.0058 0.0065 0.0057 0.0072 0.0041 0.0022
StereoDiff (Ours) 0.0133 0.0064 0.0050 0.0136 0.0141 0.0174 0.0186 0.0156 0.0033 0.0023 0.0018

Table 6. Quantitative comparisons of different frequency domains on Bonn [39] dataset, among MonST3R [86], DepthCrafter [26],
and StereoDiff. We use DFT and Inverse DFT to disentangle the components of the metric sequences into various frequency domains. For
clearer visualization, the entire frequency range is divided into 11 discrete groups: F0 ∼ F10, representing low to high frequencies. Here we
only report supplementary results calculated on RMSE↓ and (1− δ2)↓.

Metrics Method Low Freq. High Freq.
F0 F1 F2 F3 F4 F5 F6 F7 F8

AbsRel↓
DepthCrafter 0.1620 0.0306 0.0324 0.0363 0.0272 0.0169 0.0129 0.0103 0.0076
MonST3R 0.1666 0.0258 0.0221 0.0277 0.0279 0.0208 0.0190 0.0135 0.0135
StereoDiff (Ours) 0.1476 0.0209 0.0155 0.0285 0.0247 0.0171 0.0136 0.0106 0.0078

RMSE↓
DepthCrafter 5.4048 0.7941 0.8940 1.0056 0.8343 0.4651 0.3548 0.2641 0.1965
MonST3R 4.1926 0.4247 0.3956 0.4656 0.5366 0.5599 0.5215 0.3529 0.2526
StereoDiff (Ours) 4.4291 0.2985 0.3678 0.5270 0.5345 0.4628 0.3496 0.2690 0.2293

(1− δ1)↓
DepthCrafter 0.2322 0.0635 0.0671 0.0821 0.0674 0.0482 0.0352 0.0269 0.0204
MonST3R 0.2647 0.0679 0.0506 0.0977 0.0853 0.0605 0.0555 0.0428 0.0427
StereoDiff (Ours) 0.2304 0.0777 0.0557 0.0930 0.0744 0.0618 0.0403 0.0325 0.0262

(1− δ2)↓
DepthCrafter 0.0489 0.0155 0.0201 0.0279 0.0257 0.0178 0.0105 0.0072 0.0055
MonST3R 0.0344 0.0100 0.0073 0.0159 0.0127 0.0111 0.0113 0.0100 0.0092
StereoDiff (Ours) 0.0367 0.0136 0.0133 0.0216 0.0171 0.0147 0.0118 0.0086 0.0068

Table 7. Quantitative comparisons across different frequency domains on KITTI [19] dataset, among MonST3R [86], DepthCrafter [26],
and StereoDiff. Following the settings in Tab. 6, we apply DFT and Inverse DFT to decompose the metric sequences into various frequency
domains. For clearer visualization, the entire frequency range is grouped into 9 discrete bands, F0 to F8, representing low to high frequencies.
Results are reported on AbsRel↓, RMSE↓, (1− δ1)↓, and (1− δ2)↓.

Region AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑

Dynamic -0.0463 -0.5809 +0.0982 +0.0294
Overall -0.0191 +0.2364 +0.0375 -0.0017
Static -0.0171 +0.2968 +0.0326 -0.0042

(a) Performance improvement of StereoDiff over MonST3R. For example,
AbsRel = AbsRelStereoDiff − AbsRelMonST3R.

Region AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑

Dynamic +0.0110 -0.4692 -0.0344 -0.0131
Overall -0.0147 -0.9638 +0.0067 +0.0128
Static -0.0184 -1.0070 +0.0126 +0.0163

(b) Performance improvement of StereoDiff over DepthCrafter.

Table 8. Quantitative comparisons on dynamic and static
regions of the scenes in the KITTI [19] dataset, among
MonST3R [86], DepthCrafter [26] and StereoDiff. FlowSAM [70]
is utilized for masking moving objects.

ported in Tab. 6 and 7. These results also demonstrate that
StereoDiff effectively maintains the strong low-frequency
global consistency achieved via stereo matching, while sig-
nificantly enhancing the high-frequency local consistency.

For a more comprehensive and in-depth understanding, the
error sequences calculated on AbsRel↓, RMSE↓, (1− δ1)↓,
and (1−δ2)↓, across different frequency domains are visual-
ized, as shown in Fig. 8 for Bonn [39] dataset and Fig. 9, 10
for KITTI [19] dataset. The frequency domains are grouped
exponentially: the first range, F0, includes the first 20 dis-
crete frequencies, F1 covers the next 21, F2 includes the next
22, and so on. For clearer visualization, only the first scene
of Bonn dataset is illustrated, which contains 438 frames and
219 discrete frequency domains, resulting in 8 groups. How-
ever, for quantitative comparisons (Tab. 6 and main paper’s
Tab. 2), all 6 scenes with a total of 2744 frames are used,
resulting in 11 groups. For KITTI, all evaluation scenes are
included in both the visualizations (Fig. 6, 9, and 10) and
quantitative comparisons (Tab. 7), with 797 frames in total,
resulting in 9 frequency domain groups.

Additionally, Tab. 8 clearly shows that StereoDiff outper-
forms MonST3R mainly in high-frequency dynamic regions
and outperforms DepthCrafter mainly in low-frequency
static regions. These results also align well with our analysis.
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(a) Video depth comparisons between MonST3R [86] and StereoDiff. (b) Magnitude spectrum of a list of numbers.

Figure 7. Smoothing abrupt depth jitters and flickering also improves the low-frequency performance. On the left (a) we display
a sequence of video depth comparisons between MonST3R [86] and StereoDiff, demonstrating that StereoDiff effectively eliminate the
harmful and sudden depth jitters caused by the significantly inaccurate camera pose estimations of certain frames. On the right (b), we
present the magnitude spectrum of three different number lists, which are served as toy examples representing the error sequences of (from
top to bottom): stereo matching-based video depth Ds, StereoDiff’s video depth Dsd that partially mitigates harmful abrupt depth shifts, and
the ideal StereoDiff output that completely eliminates these abrupt depth shifts, respectively.

8. Analysis on Performance in Low Frequency

Generally, we expect StereoDiff’s depth maps Dsd can basi-
cally inherit the global consistency obtained via the stereo
matching stage, with significantly enhanced local consis-
tency. However, as shown in Tab. 6 and 7, and main paper’s
Tab. 1 and 2, the low-frequency error components of stereo
matching-based depth maps Ds are often slightly reduced,
which may seem counterintuitive. This section provides
supplementary analysis to explain this phenomenon.

As discussed in Sec. 1 and 3.2 of the main paper, local
consistency, particularly in dynamic areas, relates to the
temporal stability of depth values across short sequences
and exhibits high-frequency characteristics. As shown in
Fig. 7 (a), besides the inconsistencies on dynamic objects
caused by limited window-size, stereo matching-based depth

maps Ds can also suffer from abrupt errors in camera motion
estimation, causing sudden shifts and depth fluctuations in
certain frames, which is one of the reasons that bring local
inconsistencies (Sec. 3.2 of the main paper). Additionally,
Fig. 7 (b) displays the magnitude spectrum of three number
lists representing the error sequences of stereo matching-
based video depth Ds and StereoDiff’s video depth Dsd that
partially and completely eliminates these abrupt shifts. The
results reveal that while StereoDiff significantly reduces
high-frequency errors in Ds by approximately 6 times (∼
15.0 →∼ 2.5), the low-frequency errors are also slightly
reduced (∼ 25.0 →∼ 12.5, approximately 2 times smaller).
These findings indicate that the second stage of StereoDiff,
while primarily targeting high-frequency errors to enhance
local consistency, can also work on low-frequency errors,
slightly improving the global consistency.



(a) AbsRel↓

(b) RMSE↓

(c) (1− δ1)↓

(d) (1− δ2)↓

Figure 8. The error sequence across different frequency domains on Bonn [39] dataset. The first scene of Bonn, “balloon”, containing
438 frames, is used as an example here. DFT and Inverse DFT are utilized to disentangle the components of the metric sequences into
various frequency domains. For clearer visualization, only the modulus of the obtained complex numbers after Inverse DFT is plotted.



(a) AbsRel↓

K

(b) RMSE↓

Figure 9. The error sequence of AbsRel↓ and RMSE↓ across different frequency domains on KITTI [19] dataset. Following Tab. 6,
DFT and Inverse DFT are utilized to disentangle the components of the metric sequences into various frequency domains. Also for clearer
visualization, only the modulus of the obtained complex numbers after Inverse DFT is plotted.



(a) (1− δ1)↓

(b) (1− δ2)↓

Figure 10. The error sequence of (1− δ1)↓ and (1− δ2)↓ across different frequency domains on KITTI [19] dataset. The settings for
this visualization are exactly the same as Fig. 9.
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Figure 11. Qualitative Comparisons on Bonn [39] dataset. Please see the specific caption on the next page.
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Figure 12. Qualitative Comparisons on Bonn [39] dataset, conducted among two SoTA video depth estimators, MonST3R [86] and
DepthCrafter [26], alongside StereoDiff. Four frames are sampled from a video depth sequence to form a complete comparison set.
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Figure 13. Qualitative Comparisons on KITTI [19] dataset. Please see the specific caption on the next page.
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Figure 14. Qualitative Comparisons on KITTI [19] dataset. Comparisons among MonST3R [86], DepthCrafter [26], and StereoDiff are
presented, with four frames sampled from a video depth sequence as a comparison set, similar to Fig. 8. For better clarity, the corresponding
error maps are provided below each estimated depth map. Please zoom in for detailed views.



9. Qualitative Comparisons

Qualitative comparisons on two zero-shot, dynamic,
and read-world video depth benchmarks, among
DepthCrafter [26], MonST3R [86], and StereoDiff
are illustrated in Fig. 11 and 12 for Bonn [39] dataset
and Fig. 13 and 14 for KITTI [19] dataset. For better
clarity, Fig. 13 and 14 include the corresponding error
map below each estimated depth map. In static regions,
StereoDiff effectively utilizes stereo matching to deliver
highly robust and stable video depth estimations. This
approach minimizes large depth shifts commonly observed
in DepthCrafter [26], where depth values on static back-
grounds can largely vary between adjacent windows. This
demonstrates the advantage of stereo matching in enhancing
global consistency. In dynamic regions, StereoDiff excels in
maintaining smooth local consistency across consecutive
frames, addressing challenges posed by both the object
motion and camera movement. In contrast, MonST3R [86]
suffers from pronounced flickering and depth jitters in these
areas. StereoDiff’s one-step denoising process (the second
stage), performed by the video depth diffusion model,
ensures smoother and flicker-free depth predictions.

StereoDiff’s two-stage pipeline synergizes the strengths
of stereo matching and video depth diffusion. For static
regions, stereo matching ensures robust and strong global
consistency thanks to the global 3D constraints. Meanwhile,
the video depth diffusion stage greatly improves the smooth-
ness of depth maps especially in dynamic areas, without
sacrificing the obtained global consistency. This two-stage
approach effectively addresses the distinct challenges of
static and dynamic regions, delivering a comprehensive solu-
tion for consistent and accurate video depth estimation.

As for visualization, all depth maps use the same col-
ormap (Spectral) from the matplotlib library. Be-
fore visualization, both predicted and GT depth maps are
normalized by the maximum depth value of the GT. Notably,
the color tones of depth maps differ largely between Bonn
and KITTI. In KITTI, the minimum depth values for both
GT and predictions are close to 0, resulting in normalized
values covering the full range of 0 ∼ 1 and basically show-
ing the entire colormap. In contrast, for Bonn, the minimum
depth values are typically in the range of 3 ∼ 5m. After
normalization, the depth maps may span merely 0.3 ∼ 1,
leading to inadequate red tones in the visualizations.

10. Video Results for Better Comparisons

Please see the attached *.mp4 files for the video results
comparisons on Bonn [39] dataset, among DepthCrafter [26],
MonST3R [86], and StereoDiff. We eliminate the video
results for KITTI [19] because of KITTI’s video length is
much shorter than Bonn. The average video length of KITTI
is ∼ 100 frames while for Bonn the average length is ∼ 500

frames. Longer video depth results can more clearly show
the superior global and local consistency of StereoDiff over
DepthCrafter [26] and MonST3R [86].

11. Limitations and Benchmarks Selection
Limitations. The limitation of StereoDiff mainly stems from
its first stage, which is a stereo matching process designed to
achieve robust and strong global consistency through global
3D constraints. SfM methods [18, 38, 50, 51, 54, 63, 64, 68,
69, 86] inevitably face failure cases due to various limita-
tions. These include challenges with textureless or repeti-
tive surfaces, constantly changing lighting conditions, and
computational challenges in large-scale scenarios. While
improvements can reduce failures, the various limitations
cannot be entirely avoided. In the KITTI dataset [19], the
quality of 3D structures varies significantly across scenes due
to two main factors: 1) the extremely limited resolution, as
images are down-scaled from 1216× 352 to 512× 144; and
2) large proportions of textureless surfaces, such as roads.
We display both the good cases and failure cases in Fig. 15
for clearer understanding.
Benchmarks Selection. As discussed in Sec. 1 and 4.1
of the main paper, StereoDiff is validated on two well-
acknowledged, zero-shot, dynamic, and real-world video
depth benchmarks: Bonn [39] for indoor scenes and
KITTI [19] for outdoor scenes. The complete Bonn dataset
comprises 24 dynamic scenes and 2 static scenes, totaling
∼ 12, 000 frames. The motions of dynamic scenes can be
classified into 3 categories: 1) one moving object and one
moving person, 2) only one moving person, and 3) two mov-
ing persons. For the diversity of motions and evaluation
efficiency, 6 dynamic scenes are selected9, covering all 3
motions categories:

Scene Name Motion Category
balloon 1
balloon2 1
person_tracking 2
person_tracking2 2
synchronous 3
synchronous2 3

For KITTI [19], following prior works [26, 86], the
validation set is employed for evaluation. The valida-
tion set contains 13 outdoor dynamic scenes. One scene,
2011_09_26_drive_0036, is excluded due to extreme
failures, as illustrated in Fig. 15 (a). The remaining 12 scenes
are used for validation. While some scenes demonstrate good
3D structures, as seen in (b, c) of Fig. 15, others can be less
optimal. Please refer to Fig. 16 for additional examples of
3D structures in KITTI.

9For balloon_tracking and balloon_tracking2, both a dy-
namic object and a moving person are included.



(a) Failure case (KITTI’s 2011_09_26_drive_0036)

(b) Good case (2011_09_26_drive_0095) (right view) (c) Good case (left view)

Figure 15. 3D structures of scenes in KITTI [19] dataset. We display both the failure cases (a) and good cases from different views (b, c).



(a) 2011_09_26_drive_0005

(b) 2011_09_26_drive_0013

(c) 2011_09_26_drive_0023

(d) 2011_09_29_drive_0026

Figure 16. Additional 3D scene structures in KITTI [19] dataset, for a more comprehensive understanding.
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